HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a, Để đa thức 2x + 10 có nghiệm thì 2x + 10 = 0
2x = -10
x = -10 : 2 = -5
Vậy x = -5 là nghiệm của đa thức trên
b, Để đa thức \(3x-\dfrac{1}{2}\)có nghiệm thì \(3x-\dfrac{1}{2}\) = 0
\(3x=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}:3\)
\(x=\dfrac{1}{6}\)
Vậy x = \(\dfrac{1}{6}\) là nghiệm của đa thức trên
c, Để đa thức (x - 1) (x2 + 1) có nghiệm thì (x - 1) (x2 + 1) = 0
<=>\(\left[{}\begin{matrix}x-1=0\Leftrightarrow x=1\\x^2+1>0\forall x\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức (x - 1) (x2 + 1)
Cho : a + b + c = 0; f(x) = ax2 + bx + c
Ta có : f(1) = a . 12 + b . 1 + c
= a + b + c = 0
Vậy x = 1 là nghiệm của đa thức f(x)
Cho : a - b + c = 0; h(x) = ax2 + bx + c
Ta có : h(-1) = a . (-1)2 + b . (-1) + c
= a - b + c = 0
Vậy x = -1 là nghiệm của đa thức h(x)
a, f(x) = x2 - 5x + 4
Ta có : a + b + c = 1 + (-5) + 4 = 0
=> f(1) = 12 - 5 + 4 = 0
Vậy x = 1 là một nghiệm của đa thức f(x)
b, f(x) = 2x2 + 3x + 1
Ta có : a - b + c = 2 - 3 + 1 = 0
=> f(-1) = 2 . (-1)2 + 3 . (-1) + 1 = 0
Vậy x = -1 là một nghiệm của đa thức f(x)
a, Để (x - 2) (x + 2) có nghiệm thì (x - 2) (x + 2) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy x = 2; x = -2 là nghiệm của đa thức (x - 2) (x + 2)
b,Để (x - 1) (x2 + 1) có nghiệm thì (x - 1) (x2 + 1) = 0
<=>\(\left[{}\begin{matrix}x-1=0< =>x=1\\x^2+1>0\forall x\end{matrix}\right.\)
C. Giữa 2 đầu của bóng đèn pin được tháo rời khỏi đèn pin