a) \(\sqrt{x-3}=2\)
\(\Leftrightarrow\) \(x-3=4\)
\(\Leftrightarrow\) \(x=7\)
b) \(\sqrt{x^2-6x+9}=5\) (ĐKXĐ: \(x\ne0\) , \(x\ge3\) )
\(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=5\)
\(\Leftrightarrow\) \(\left|x-3\right|=5\)
\(\Leftrightarrow\) \(x-3=5\) với x > 0
\(x-3=-5\) với x < 0
\(\Leftrightarrow\) \(x=8\) (thỏa mãn)
\(x=-2\) (loại) | NOTE: cũng có thể ghi là không thỏa mãn)
c) \(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\) (ĐKXĐ: \(x\ne0\) )
\(\Leftrightarrow\) \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)
\(\Leftrightarrow\) \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)
\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) | Có lẽ không nên làm theo cách này vì nó khá dài dòng|
\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)-3\left(\sqrt{3}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(\left(2x-3\right)\left(\sqrt{3}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(2x-3=0\) hoặc \(\sqrt{3}+\sqrt{2}=0\) (luôn đúng)
\(\Leftrightarrow\) \(2x=3\)
\(\Leftrightarrow\) \(x=\dfrac{3}{2}\) (thỏa mãn)