Cho tam giác ABC có trọng tâm G . Gọi I là trung điểm của AG . Đẳng thức vecto nào sau đây đúng ?
A. \(\overrightarrow{CI}=\dfrac{-1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
B. \(\overrightarrow{CI}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
C. \(\overrightarrow{CI}=\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
D. \(\overrightarrow{CI}=\dfrac{-1}{3}\overrightarrow{CA}-\dfrac{1}{6}\overrightarrow{CB}\)
cho tam giác ABC , trên cạnh AB , AC lấy hai điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB},\overrightarrow{CE}=3\overrightarrow{EA}\) . GỌi M là trung điểm DE và I là trung điểm của BC . Đẳng thức vecto nào sau đây đúng :
A . \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\) B. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
C. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\) D. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\)