HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Trong mặt phẳng toạ độ Oxy cho tam giác ABC vuông tại A, có đỉnh B(-3;2). Đường phân giác trong góc A có phương trình x+y-7 = 0. Viết phương trình đường tròn nội tiếp tam giác ABC biết diện tích tam giác bằng 24 và điểm A có hoành độ dương
Có bao nhiêu số tự nhiên có 8 chữ số khác nhau mà có mặt 2 chữ số lẻ và 3 chữ số chẵn, trong đó mỗi chữ số chẵn có mặt đúng 2 lần?
Cho dãy số \(\left(a_n\right)\) xác định bởi công thức:
\(\hept{\begin{cases}a_1=1;a_2=2;\\na_{n+2}=\left(3n+2\right)a_{n+1}-2\left(n+1\right)a_n;n=1;2;3...\end{cases}}\)
a) Tìm công thức số hạng tổng quát của dãy \(\left(a_n\right)\)
b)Chứng minh \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\frac{n\left(n+1\right)}{2};\forall n\inℕ^∗\)
c) Tính \(lim\left(\frac{a_1}{3}+\frac{a_2}{3^2}+...+\frac{a_n}{3^n}\right)\)