Xét 3 trường hợp :
+ TH1: a = b (a, b \(\in\) N*)
=> \(\left\{{}\begin{matrix}a+n=b+n=>\dfrac{a+n}{b+n}=1\\\dfrac{a}{b}=1\end{matrix}\right.\)
=> \(\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
+ TH2: a > b (a, b \(\in\) N*)
Ta có : \(\dfrac{a}{b}=\dfrac{a\left(b+n\right)}{b\left(b+n\right)}=\dfrac{ab+an}{b^2+bn}\) (n \(\in\) N*)
\(\dfrac{a+n}{b+n}=\dfrac{\left(a+n\right)b}{\left(b+n\right)b}=\dfrac{ab+bn}{b^2+bn}\)
Ta có : a > b => an > bn ( vì n \(\in\) N*)
=> ab + an > ab + bn
=> \(\dfrac{ab+an}{b^2+bn}>\dfrac{ab+bn}{b^2+bn}\)
=> \(\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+ TH3: a < b (a, b \(\in\) N*)
Ta có : \(\dfrac{a}{b}=\dfrac{a\left(b+n\right)}{b\left(b+n\right)}=\dfrac{ab+an}{b^2+bn}\) (n \(\in\) N*)
\(\dfrac{a+n}{b+n}=\dfrac{\left(a+n\right)b}{\left(b+n\right)b}=\dfrac{ab+bn}{b^2+bn}\)
Ta có : a < b => an < bn ( vì n \(\in\) N*)
=> ab + an < ab + bn
=> \(\dfrac{ab+an}{b^2+bn}< \dfrac{ab+bn}{b^2+bn}\)
=> \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
Vậy \(\dfrac{a}{b}=\dfrac{a+n}{b+n}\)khi a = b
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\)khi a > b
\(\dfrac{a}{b}< \dfrac{a+n}{b+n}\)khi a < b