Học tại trường Chưa có thông tin
Đến từ Bắc Giang , Chưa có thông tin
Số lượng câu hỏi 3
Số lượng câu trả lời 1158
Điểm GP 1
Điểm SP 1819

Người theo dõi (354)

Do Thi Hoa
Min Min
phươ ng
zozozo

Đang theo dõi (13)


Câu trả lời:

A B C 60 I E D F

a)

Áp dụng định lí tổng 3 góc trong tam giác ta có:

\(\widehat {A}\) + \(\widehat {B} + \widehat {C}\) = 180°

hay: 60° + \(\widehat {B} + \widehat {C}\) = 180°

=> \(\widehat {B} + \widehat {C}\) = 180 ° - 60 ° = 120°

\(\widehat {IBF} = \widehat {IBE}; \widehat {ICF} = \widehat {ICD}\) nên:

\(\widehat {IBF} + \widehat {ICF} = 120° : 2 = 60°\)

Áp dụng định lí tổng 3 góc trong tam giác ta có:

\(\widehat {BIC} = 180° - (\widehat {IBF} + \widehat {ICF})\)

\(\widehat {BIC}=180° - 60° = 120°\)

Vậy \(\widehat {BIC} = 120°\)

b)

Vì IF là tia phân giác của góc BIC nên:

\(\widehat {BIF} = \widehat {FIC} = 120° : 2 = 60°\)

Vì EIB và BIC là 2 góc kề bù nên:

\(\widehat {EIB} = 180° - BIC\)

\(\widehat {EIB} = 180° - 120° = 60°\)

Xét 2 tam giác BEI và BFI ta có:

\(\widehat {EBI} = \widehat {IBF} (gt)\)

BI là cạnh chung

\(\widehat {EIB} = \widehat {BIF} = 60°\) (cmt)

Vậy \(\Delta BEI=\Delta BFI\) (g-c-g).

=> BE = BF (2 cạnh tương ứng).

Ta có:

\(\widehat {FIC} = 60° (cmt)\)

\(\widehat {DIC} + \widehat {BIC} = 180°\) (2 góc kề bù)

hay: \(\widehat {DIC} + 120° = 180°\)

=> \(\widehat {DIC} = 180° - 120° = 60°\)

Xét 2 tam giác DIC và FIC ta có:

\(\widehat {DCI} = \widehat {ICF} (gt)\)

IC là cạnh chung

\(\widehat {FIC} = \widehat {DIC} = 60° (cmt)\)

Vậy \(\Delta DIC=\Delta FIC\) (g-c-g).

=> CD = CF (2 cạnh tương ứng).

Ta có:

BC = BF + CF

Mà BF = BE; CF = CD nên:

BE + CD = BC (đpcm).