Rút gọn biểu thức : A = \(\frac{tan\alpha-cot\alpha}{tan\alpha+cot\alpha}+cos2\alpha\)
\(B=\frac{1+sin4\alpha-cos4\alpha}{1+sin4\alpha+cos4\alpha}\)
\(C=\frac{3-4cos2\alpha+cos4\alpha}{3+4cos2\alpha+cos4\alpha}\)
\(D=\frac{sin^22\alpha+4sin^4\alpha-4sin^2\alpha.cos^2\alpha}{4-sin^22\alpha-4sin^2\alpha}\)
Câu 1 : Chọn đẳng thức đúng và chứng minh :
\(A.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1-sin\alpha}{2}\) \(B.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1+sin\alpha}{2}\)
\(C.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1-cos\alpha}{2}\) \(D.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1+cos\alpha}{2}\)