a) Lũy thừa tăng của biến:
\(P\left(x\right)=3x^2-5+x^4-3x^3-x^6-2x^2-x^3\)
\(=\left(3x^2-2x^2\right)+\left(-3x^3-x^3\right)+x^4-x^6-5\)
\(=x^2-4x^3+x^4-x^6-5\)
\(=-5+x^2-4x^3+x^4-x^6\)
\(Q\left(x\right)=x^3+2x^5-x^4+x^2-2x^3+x-1\)
\(=\left(x^3-2x^3\right)+2x^5-x^4+x^2+x-1\)
\(=-x^3+2x^5-x^4+x^2+x-1\)
\(=-1+x+x^2-x^3-x^4+2x^5\)
b) P(x)+Q(x)
\(P\left(x\right)+Q\left(x\right)=\left(-5+x^2-4x^3+x^4-x^6\right)+\left(-1+x+x^2-x^3-x^4+2x^5\right)\)
\(=\left(-5\right)+x^2-4x^3+x^4-x^6+\left(-1\right)+x+x^2-x^3-x^4+2x^5\)
\(=\left(-5-1\right)+x+\left(x^2+x^2\right)+\left(-4x^3-x^3\right)+\left(x^4-x^4\right)+2x^5-x^6\)
\(=-6+x+2x^2-5x^3+2x^5-x^6\)
\(P\left(x\right)-Q\left(x\right)=\left(-5+x^2-4x^3+x^4-x^6\right)-\left(-1+x+x^2-x^3-x^4+2x^5\right)\)
\(=\left(-5\right)+x^2-4x^3+x^4-x^6+1-x-x^2+x^3+x^4-2x^5\)
\(=\left(-5+1\right)+x+\left(x^2-x^2\right)+\left(-4x^3+x^3\right)+\left(x^4+x^4\right)-2x^5-x^6\)
\(=-4+x-3x^3+2x^4-2x^5-x^6\)
^...^
^_^