Bạn tự vẽ hình nha!!!
Ta có:
\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))
\(AC \perp DF\) (gt)
\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)
mà D là trung điểm BC (gt)
\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)
Xét \(\Delta ABC\) có:
D là trung điểm BC (gt)
F là trung điểm của AC (cmt)
\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)
b) Chứng minh tương tự ta có E là trung điểm AB
Xét tứ giác ADBM có:
\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))
\(EA=EB\left(cmt\right)\)
MD giao AB tại E (gt)
\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)
mà \(AB \perp MD\) (M đối xứng với D qua AB (gt))
\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)
c) Xét tứ giác AEDF có:
\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))
\(\widehat{AED} = 90^0\) (\(MD \perp AB\))
\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))
\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)
Để hình chứ nhật AEDF
\(\Leftrightarrow\) AEDF là hình thoi
\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)
\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))
\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A