gọi n là số lần lặp lại vận tốc của xe
ta có:
quãng đường xe đi đc trong 20 phút đầu là:
S1=tv1
quãng đường xe đi được trong 20 phút tiếp theo là:
S2=tv2=2tv1
quãng đường xe đi được trong 20 phút lần thứ ba là:
S3=tv3=3tv1
....
quãng đường xe đi đc trong 20 phút lần thứ n là:
\(S_n=tv_n=ntv_1\)
tổng quãng đường xe đi được là:
S=S1+S2+S3+....+Sn
\(\Leftrightarrow S=tv_1+2tv_1+3tv_3+...+ntv_1\)
\(\Leftrightarrow S=tv_1\left(1+2+3+....+n\right)\)
ta có \(1+2+3+..+n=\dfrac{n\left(n+1\right)}{2}\)(cái này bên toán nên muốn hỏi cách chứng minh bạn lên mạng hoặc hỏi bên toán bạn nhé)
từ đó ta suy ra:
\(S=tv_1\dfrac{n\left(n+1\right)}{2}\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}.\dfrac{1}{3}.12=60\)
\(\Leftrightarrow2n\left(n+1\right)=60\)
\(\Leftrightarrow n^2+n-30=0\)
giải phương trình trên ta được:
n=5 hoặc n=-6(loại)
từ đó ta suy ra:
thời gian mà xe đã đi là:
T=nt+(n-1)t'(T:tổng thời gian;t:thời gian chạy;t':thời gian nghỉ)
\(\Leftrightarrow T=5.\dfrac{1}{3}+4.\dfrac{1}{6}\)
\(\Rightarrow T=\dfrac{7}{3}h=140'\)
b)vận tốc trung bình của xe là:
\(v_{tb}=\dfrac{S}{T}=\dfrac{60}{\dfrac{7}{3}}=\dfrac{180}{7}\) km
c)ta có:
vận tốc trung bình của xe là:
\(v_{tb}'=\dfrac{S'}{T'}\)
\(\Leftrightarrow\dfrac{S'}{T'}=18\)
\(\Leftrightarrow\dfrac{2n\left(n+1\right)}{nt+\left(n-1\right)t'}=18\)
\(\Leftrightarrow n\left(n+1\right)=3n+1,5n-1,5\)
\(\Leftrightarrow n^2+n=4,5n-1,5\)
\(\Leftrightarrow n^2-3,5n+1,5=0\)
giải phương trình trên ta được:
n=3 hoặc n=0,5(loại)
từ đó suy ra:
S'=2n(n+1)=10km
vậy vị trí của xe lúc đó cách A 10km
(p/s:dài quá)