HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\left\{{}\begin{matrix}-\left|5x-2\right|\le0\\-\left|3g+12\right|\le0\end{matrix}\right.\Rightarrow-\left|5x-2\right|-\left|3g+12\right|\le0\)
\(\Rightarrow A=4-\left|5x-2\right|-\left|3g+12\right|\le4\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|5x-2\right|=0\\\left|3g+12\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\g=-4\end{matrix}\right.\)
Vậy \(MAX_A=4\) khi \(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\g=-4\end{matrix}\right.\)
\(-\left|10,2-3,x\right|\le0\)
\(\Rightarrow A=-\left|10,2-3,x\right|-14\le-14\)
Dấu " = " khi \(-\left|10,2-3,x\right|=0\Rightarrow10,2=3,x\)
\(\Rightarrow102=3x\Rightarrow x=34\)
Vậy \(MAX_A=-14\) khi x = 34
Bài 1:
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x-3\right|+\left|x-5\right|=\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-3\ge0\\5-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\)
Vậy \(MIN_A=2\) khi \(3\le x\le5\)
b, Ta có: \(\left\{{}\begin{matrix}\left|y^2-25\right|\ge0\\\left|x^2-4\right|\ge0\end{matrix}\right.\Rightarrow\left|y^2-25\right|+\left|x^2-4\right|\ge0\)
\(\Rightarrow B\ge3\)
Dấu " = " khi \(\left\{{}\begin{matrix}y^2-25=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\pm5\\x=\pm2\end{matrix}\right.\)
Vậy \(MIN_B=2\) khi \(\left\{{}\begin{matrix}x=\pm2\\y=\pm5\end{matrix}\right.\)
Bài 2:
a, Xét \(x\ge-2\) có:
\(A=3x-3x-6-12=-18\)
+) Xét x < -2 có:
\(A=3x+3x+6-12=6x-6\)
Vậy...
b, tương tự
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left\{{}\begin{matrix}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\)
Ta có: \(M=\left(x+y\right)^{2017}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(=\left(-1\right)^{2008}=1\)
Vậy M = 1
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}\)
\(=\dfrac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}\)
\(=\dfrac{8}{1-x^8}\)
\(6x^4-11x^2+3=6x^4-9x^2-2x^2+3\)
\(=3x^2\left(2x^2-3\right)-\left(2x^2-3\right)\)
\(=\left(3x^2-1\right)\left(2x^2-3\right)\)
\(G=\left(5x-7\right)\left(7x+3\right)-\left(7x+2\right)\left(5x-4\right)\)
\(=35x^2+15x-49x-21-35x^2+28x-10x+8\)
\(=-16x-13\)
Thay x = -3 \(\Rightarrow G=35\)
Vậy G = 35 khi x = -3
\(F=4.x.2-2.x+3x\left(x-5\right)\)
\(=6x+3x^2-15x\)
\(=3x^2-9x=3x\left(x-9\right)\)
Thay x = -1 có:
\(F=-3.\left(-10\right)=30\)
a, \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\)
\(\Rightarrowđpcm\)
b, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
Bài 3:
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\\\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\\\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\end{matrix}\right.\Rightarrow P\ge\dfrac{a+b+c}{a+b+c}=1\) (1)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\\\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\\\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}\end{matrix}\right.\Rightarrow P< \dfrac{2a+2b+2c}{a+b+c}=2\)(2)
Từ (1), (2) \(\Rightarrow1< P< 2\)
\(\Rightarrow P\notin N\)