1,
a, Ta có: \(\left|2,5-x\right|\ge0\Rightarrow A=\left|2,5-x\right|+5,8\ge5,8\)
Dấu " = " khi \(\left|2,5-x\right|=0\Rightarrow x=2,5\)
Vậy \(MIN_A=5,8\) khi x = 2,5
b, Ta có: \(-\left|x+\dfrac{2}{3}\right|\le0\Rightarrow B=2-\left|x+\dfrac{2}{3}\right|\le2\)
Dấu " = " khi \(-\left|x+\dfrac{3}{2}\right|=0\Rightarrow x=\dfrac{-3}{2}\)
Vậy \(MAX_B=2\) khi \(x=\dfrac{-3}{2}\)
2,
Giải:
Oy // AC \(\Rightarrow\widehat{O_1}+\widehat{C_2}=180^o\) ( 2 góc trong cùng phía )
\(\Rightarrow\widehat{C_2}=110^o\left(\widehat{O_1}=70^o\right)\)
AB // Ox \(\Rightarrow\widehat{A}+\widehat{C_2}=180^o\) ( 2 góc trong cùng phía )
\(\Rightarrow\widehat{A}=70^o\left(\widehat{C_2}=110^o\right)\)
Vậy...