HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a, 310 + 311 = 310 + 310 . 3 = 310( 1 + 3 ) = 310 . 4 chia hết cho 4
b, 76 + 75 - 74 = 74 . 72 + 74 . 7 - 74 = 74(72 + 7 - 1 ) = 74 . 55 = 74 . 11 . 5 chia hết cho 11
c, 109 + 108 + 107 = 107 . 102 + 107 . 10 + 107 = 107(102 + 10 + 1 ) = 107 . 111 chia hết cho 5 . 111
Cạnh tăng 20% thì diện tích = (6/5)2 = 36/25 =144/100 = 100%+ 44%
Vậy diện tích tăng 44%
a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)
\(\Rightarrowđpcm\)
b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)
a, \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=x^4-\dfrac{4}{25}y^2\)
b, \(\left(3x-2y\right)\left(3x+2y\right)\left(9x^2+4y^2\right)\)
\(=\left(9x^2-4y^2\right)\left(9x^2+4y^2\right)\)
\(=81x^4-16y^4\)
Giải:
Ta có: \(3x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{y-x}{3-4}=\dfrac{5}{-1}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-15\end{matrix}\right.\)
Vậy...
\(\left(2x-3\right)^{2015}=\left(2x-3\right)^{2013}\)
\(\Rightarrow\left(2x-3\right)^{2015}-\left(2x-3\right)^{2013}=0\)
\(\Rightarrow\left(2x-3\right)^{2013}\left[\left(2x-3\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-3\right)^{2013}=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\)
+) \(\left(2x-3\right)^{2013}=0\Rightarrow x=\dfrac{3}{2}\)
+) \(\left(2x-3\right)^2-1=0\Rightarrow\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{2}\) hoặc x = 2 hoặc x = 1
Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel có:
\(a^2+b^2=\dfrac{a^2}{1}+\dfrac{b^2}{1}\ge\dfrac{\left(a+b\right)^2}{1+1}=\dfrac{1}{2}\)
Dấu " = " khi \(a=b=\dfrac{1}{2}\)
\(\left|3x-1\right|=1-3x\)
+) Xét \(x\ge\dfrac{1}{3}\) có: \(3x-1=1-3x\Leftrightarrow6x=2\Leftrightarrow x=\dfrac{1}{3}\) ( t/m )
+) Xét \(x< \dfrac{1}{3}\) có:
\(1-3x=1-3x\)
\(\Leftrightarrow x\in R\forall x< \dfrac{1}{3}\)
Vậy \(x\le\dfrac{1}{3}\)