HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
bạn giải đi rùi mình tick cho
a, \(x^2-7xy+12y^2\)
\(=x^2-3xy-4xy+12y^2\)
\(=x\left(x-3y\right)-4y\left(x-3y\right)\)
\(=(x-4y)(x-3y)\)
b, \(x^3-3x+2\)
\(=x^3-x^2+x^2-x-2x+2\)
\(=x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x^2+x-2\right)\left(x-1\right)\)
\(=\left(x^2+2x-x-2\right)\left(x-1\right)\)
\(=\left[x\left(x+2\right)-\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x-1\right)^2\left(x+2\right)\)
\(x+y=3\Rightarrow x^2+2xy+y^2=9\)
\(\Rightarrow2xy=4\Rightarrow xy=2\)
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.3=9\)
Vậy...
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Rightarrow a^2-ab-ac+ad+ab-b^2-bc+bd+ca-bc-c^2+cd+da-db-dc+d^2=a^2+ab-ac-ad-ba-b^2+bc+bd+ca+bc-c^2-cd-da-bd+cd+d^2\) \(\Rightarrow a^2-b^2-c^2+d^2+2ad-2bc=a^2-b^2-c^2+d^2-2ad+2bc\)
\(\Rightarrow2ad-2bc=2bc-2ad\)
\(\Rightarrow ad-bc=bc-ad\)
\(\Rightarrow2ad=2bc\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrowđpcm\)
Bài 1: xem lại đề
Bài 2:
\(\left(10^{12}+25\right)^2-\left(10^{12}-25\right)^2=10^n\)
\(\Rightarrow\left(10^{12}+25-10^{12}+25\right)\left(10^{12}+25+10^{12}-25\right)=10^n\)
\(\Leftrightarrow50.2.10^{12}=10^n\)
\(\Leftrightarrow10^{14}=10^n\Rightarrow n=14\)
Vậy n = 14
Ko có câu hỏi à? Làm sao giải được!
\(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
\(d,3x^2+6x-3y^2+3\)
\(=3\left(x^2+2x+1-y^2\right)\)
\(=3\left[\left(x+1\right)^2-y^2\right]=3\left(x-y+1\right)\left(x+y+1\right)\)
b, \(\left(3x+1\right)^2-\left(x+2\right)^2\)
\(=\left(3x+1-x-2\right)\left(3x+1+x+2\right)\)
\(=\left(2x-1\right)\left(4x+3\right)\)
c, \(4xy-x^2-4y^2+16\)
\(=-\left(x^2-4xy+4y^2-16\right)\)
\(=-\left[\left(x-2y\right)^2-16\right]\)
\(=16-\left(x-2y\right)^2\)
\(=\left(4-x+2y\right)\left(4+x-2y\right)\)