Bài 1:
\(\Delta ABD-\text{vuông}-\text{tại}-A\)
\(\Rightarrow\tan B=\dfrac{AD}{AB}\)
\(\Rightarrow AD=\tan50^0\times AB\approx2,68621\left(cm\right)\)
\(S_{ABCD}=\dfrac{1}{2}\times\left(AB+CD\right)\times AD\)
\(\Rightarrow CD=\dfrac{2S_{ABCD}}{AD}-AB\approx5,15569\left(cm\right)\)
Kẻ BH _I_ CD.
\(ABHD-\text{là}-h.c.n.\left(\widehat{BAD}=\widehat{ADH}=\widehat{DHB}=90^0\right)\)
\(\Rightarrow AB=DH=2,254\left(cm\right)-\text{và}-AD=BH\approx2,68621\left(cm\right)\)
\(\Rightarrow HC=DC-DH\approx2,90169\left(cm\right)\)
\(\Delta HBC-\text{vuông}-\text{tại}-H\)
\(\Rightarrow BC^2=BH^2+HC^2\left(ptg\right)\)
\(\Rightarrow BC=\sqrt{BH^2+HC^2}\approx3,95418\left(cm\right)\)
~ ~ ~
\(\Delta HBC-\text{vuông}-\text{tại}-H\)
\(\Rightarrow\tan\widehat{HBC}=\dfrac{HC}{HB}\)
\(\Rightarrow\widehat{HBC}\approx47^012'29,89"\)
\(\Rightarrow\widehat{ABC}=\widehat{ABH}+\widehat{HBC}\approx137^012'29,89"\)
mà \(\widehat{ABC}+\widehat{BCD}=180^0\) (2 góc trong cùng phía, AB // CD)
\(\Rightarrow\widehat{BCD}\approx42^047'30,11"\)