HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
x+20%*x=7,2
x(20%+1)=7,2
x(1/5+1)=7,2
x*6/5=7,2
x*1,2=7,2
x=7,2:1,2
x=6
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
Ta có: M= \(\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\)= \(\frac{\left(1+2x\right)\left(1-\sqrt{1+2x}\right)+\left(1-2x\right)\left(1+\sqrt{1+2x}\right)}{1-\left(1-2x\right)}\)=\(\frac{1-\sqrt{1+2x}+2x-2x\sqrt{1+2x}+1+\sqrt{1+2x}-2x-2x\sqrt{1+2x}}{2x}\)
=\(\frac{2}{2x}=\frac{1}{x}\)
Với x=\(\frac{\sqrt{3}}{4}\)=> M=\(\frac{4}{\sqrt{3}}\)
Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=15\)
<=> \(5x-2x^2+2x^2-2x=15\)
<=> \(3x=15\)
<=>x=15