Giải : ta có hình vẽ
Ta có : \(\widehat{HAB}\) + \(\widehat{H}\) + \(\widehat{B}\) = \(180^0\)
thay vào ta có: \(\widehat{HAB}\) + \(90^0\) + \(60^0\) = \(180^0\)
=> \(\widehat{HAB}\) = \(30^0\)
+ ) \(\widehat{HAB}\) + \(\widehat{HAC}\) = \(90^0\)
thay vào ta có : \(30^0\) + \(\widehat{HAC}\) = \(90^0\)
=> \(\widehat{HAC}\) = \(60^0\) <=> \(\widehat{KAH}\)
+ ) \(\widehat{CHK}\) + \(\widehat{KHA}\) = \(\widehat{CHA}\)
thay vào ta có : 2 . \(\widehat{KHA}\) = \(90^0\)
=> \(\widehat{KHA}\) = \(45^0\)
Ta lại có : \(\widehat{KHA}\) + \(\widehat{KAH}\) + \(\widehat{AKH}\) = \(180^0\)
thay vào ta có : \(45^0\) + \(60^0\) + \(\widehat{AKH}\) = \(180^0\)
=> \(\widehat{AKH}\) = \(75^0\) .