HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Câu 2: Tìm x:
b) \(10x+25+x^2=0\)
<=> \(x^2+2.5x+5^2=0\)
<=> \(\left(x+5\right)^2=0\)
=> \(x+5=0\)
<=> \(x=-5\)
Vậy x= \(-5\)
a) \(2\left(x^2+3\right)-2x\left(x+3\right)=0\)
<=> \(2x^2+6-2x^2-6x=0\)
<=> \(6-6x=0\)
<=> \(6\left(1-x\right)=0\)
=> \(1-x=0\)
<=> \(x=1\)
Vậy x = 1
Câu 1.2: Rút gọn biểu thức:
a) \(2x\left(x+3\right)-x\left(2x-1\right)\)
\(=2x^2+6x-2x^2+x\)
\(=7x\)
b) \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
\(=\left(x-2y\right)\left(x^2+2xy+\left(2y\right)^2\right)\)
\(=x^3-\left(2y\right)^3\)
\(=x^3-8y^3\)
c) \(\left(x+2\right)^2+\left(x-2\right)^2\)
\(=x^2+4x+4+x^2-4x+4\)
\(=2x^2+8\)
\(=2\left(x^2+4\right)\)
d) \(\left(4y+1\right)^2-4\left(2y+3\right)\left(2y-3\right)\)
\(=\left(4y+1\right)^2-4\left(\left(2y\right)^2-3^2\right)\)
\(=\left(4y+1\right)^2-4\left(4y^2-9\right)\)
\(=16y^2+8y+1-16y^2+36\)
\(=8y+37\)
A= \(n^3-4n^2+4n-1\)
\(=\left(n^3-1\right)-\left(4n^2-4n\right)\)
\(=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2+n+1-4n\right)\)
\(=\left(n-1\right)\left(n^2-3n+1\right)\)
=> A= \(n^3-4n^2+4n-1\) là số nguyên tố khi
\(n-1=1\) hoặc \(n^2-3n+1=1\) ;
với n là số tự nhiên:
* Với \(n-1=1\) <=> n=2 => A = \(-1\) (loại)
* Với \(n^2-3n+1=1\)
<=> \(n^2-3n=0\)
<=> \(n\left(n-3\right)=0\)
1/ n=0 => A = \(-1\) (loại)
2/ n - 3 =0 <=> n = 3 => A = 2 (thoã mãn)
Vậy A = \(n^3-4n^2+4n-1\) là số nguyên tố khi n=3
\(\dfrac{2x^3-4x^2}{x^2+8x+16}.\dfrac{3x+12}{4x-x^3}\)
(ĐKXĐ: x ≠ \(-4\) ; x ≠ 0; x ≠ 2 ; x ≠ \(-2\) )
\(=\dfrac{2x^2\left(x-2\right)}{\left(x+4\right)^2}.\dfrac{3\left(x+4\right)}{x\left(4-x^2\right)}\)
\(=\dfrac{2x^2\left(x-2\right)}{\left(x+4\right)^2}.\dfrac{3\left(x+4\right)}{x\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{6x^2\left(x-2\right)\left(x+4\right)}{x\left(x+4\right)^2\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{-6x^2\left(2-x\right)\left(x+4\right)}{x\left(x+4\right)^2\left(2-x\right)\left(2+x\right)}\)
\(=\dfrac{-6x}{\left(x+4\right)\left(x+2\right)}\)
\(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\);
( ĐKXĐ: x ≠ 0; x ≠ \(-1\); x ≠ 4; x ≠ \(-2\) )
\(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\)
\(=\dfrac{x+1}{x^2-4x+2x-8}.\dfrac{4-x}{x\left(x+1\right)}\)
\(=\dfrac{x+1}{x\left(x-4\right)+2\left(x-4\right)}.\dfrac{4-x}{x\left(x+1\right)}\)
\(=\dfrac{x+1}{\left(x-4\right)\left(x+2\right)}.\dfrac{4-x}{x\left(x+1\right)}\)
\(=\dfrac{4-x}{x\left(x-4\right)\left(x+2\right)}\)
=\(\dfrac{-\left(x-4\right)}{x\left(x-4\right)\left(x+2\right)}\)
\(=\dfrac{-1}{x\left(x+2\right)}\)
1 người đào được số mét mương là:
36/10=3,6(m)
25 người đào được số mét mương là:
3,6*25=90(m)
Đáp số: 90 m
\(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\) ;
(ĐKXĐ: x ≠ 0; x ≠ \(-1\); x ≠ 4; x ≠ \(-2\))
\(=\dfrac{-\left(x-4\right)}{-x\left(x-4\right)\left(x+2\right)}\)
\(=\dfrac{-1}{-x\left(x+2\right)}\)
\(=\dfrac{1}{x\left(x+2\right)}\)
\(CM:\left(x^2-\dfrac{1}{x}\right)\left(\dfrac{x+1}{x^2+x+1}+\dfrac{1}{x-1}\right)=2x+1\)
(ĐKXĐ: x ≠ 0; x ≠ 1 )
*Biến đổi vế trái :
\(\left(x^2-\dfrac{1}{x}\right)\left(\dfrac{x+1}{x^2+x+1}+\dfrac{1}{x-1}\right)\)
\(=\dfrac{x^3-1}{x}\left(\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=\dfrac{x^3-1}{x}.\dfrac{\left(x+1\right)\left(x-1\right)+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-1}{x}.\dfrac{x^2-1+x^2+x+1}{x^3-1}\)
\(=\dfrac{2x^2+x}{x}=\dfrac{x\left(2x+1\right)}{x}\)
\(=2x+1\)
Vậy:
\(\left(x^2-\dfrac{1}{x}\right)\left(\dfrac{x+1}{x^2+x+1}+\dfrac{1}{x-1}\right)=2x+1\)
Phương trình 2 z 2 + 4 z + 5 = 0 có các nghiệm là
A. 2 ± i 6 2
B. 1 2 ± i 6 2
C. - 1 ± i 6 2
D. 1 ± i 6 2