HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
- Nếu số thực x là một số thực thì môdun x chính là giá trị tuyệt đối của số phức z.
- Nếu số phức z không phải là một số thực thì chỉ có môdun của z, không có khái niệm giá trị tuyệt đối của z.
ta có:
\(\frac{n.\left(n-1\right)}{2}=28\)
n.(n-1)=28.2
n.(n-1)=56
n.(n-1)=8.7
=>n=8
Giả sử z = x + yi (x, y ∈ R), khi đó số phức z được biểu diễn bởi điểm M(x, y) trên mặt phẳng tọa độ Oxy.
a) Trên hình 71.a (SGK), điểm biểu diễn ở phần gạch chéo có hoành độ có hoành độ x ≥ 1, tung độ y tùy ý.
Vậy số phức có phần thực lớn hơn hoặc bằng -1 có điểm biểu diễn ở hình 71.a (SGK)
b) Trên hình 71.b(SGK), điểm biểu diễn có tung độ y ∈ [1, 2], hoành độ x tùy ý.
Vậy số phức có phần ảo thuộc đoạn [-1, 2]
c) Trên hình 71.c (SGK), hình biểu diễn z có hoành độ x ∈ [-1, 1] và x2 + y2 ≤ 4 (vì |z| ≤ 4.
Vậy số phực có phần thực thuộc đoạn [-1, 1] và môdun không vượt quá 2.
Tập hợp các điểm biểu diễn các số phức z là các hình sau:
a) Ta có x = 1, y tùy ý nên tập hợp các điểm biểu diễn z là đường thẳng x = 1 (hình a)
b) Ta có y = -2, x tùy ý nên tập hợp các điểm biểu diễn z là đường thẳng y = -2 (hình b)
c) Ta có x ∈ [-1, 2] và y ∈ [0, 1] nên tập hợp các điểm biểu diễn z là hình chữ nhật sọc (hình c)
d) Ta có:
|z|≤2⇔√x2+y2≤2⇔x2+y2≤4|z|≤2⇔x2+y2≤2⇔x2+y2≤4
Vậy tập hợp các điểm biểu diễn z là hình tròn tâm O (gốc tọa độ) bán kính bằng 2 (kể cả các điểm trên đường tròn) (hình d)
a)3x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=13x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=1
b)2x+y−1=(x+2y−5)i⇔{2x+y−1=0x+2y−5=0⇔{x=−1y=3
Giả sử z = a + bi
Khi đó: |z|=√a2+b2|z|=a2+b2
Từ đó suy ra:
|z|=√a2=|a|≥a,|z|=√b2=|b|≥b
a) (3 + 2i)[(2 – i) + (3 – 2i)]
= (3 + 2i)(5 – 3i) = 21 + i
b)(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i
c) (1 + i)2 – (1 - i)2 = 2i – (-2i) = 4i
d) 3+i2+i−4−3i2−i=(3+i)(2−i)5−(4−3i)(2+i)5=7−i5−11−2i5=−45+15i
a) (3 + 4i)z = (2 + 5i) – (1 – 3i) = 1 + 8i
Vậy z=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45iz=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45i
b) (4 + 7i)z – (5 – 2i) = 6iz ⇔ (4 + 7i)z – 6iz = 5 – 2i
⇔ (4 + i)z = 5 – 2i
⇔z=5−2i4+i=(5−2i)(4−i)17⇔z=1817−1317i
a) 3z2 + 7z + 8 = 0 có Δ = 49 – 4.3.8 = -47
Vậy phương trình có hai nghiệm là: z1,2=−7±i√476z1,2=−7±i476
b) z4 – 8 = 0
Đặt Z = z2, ta được phương trình : Z2 – 8 = 0
Suy ra: Z = ± √8
Vậy phương trình đã cho có 4 nghiệm là: z1,2=±4√8,z3,4=±i4√8z1,2=±84,z3,4=±i84
c) z4 – 1 = 0 ⇔ (z2 – 1)(z2 + 1) = 0
Vậy phương trình đã cho có 4 nghiệm là ±1 và ±i
Giả sử hai số cần tìm là z1 và z2.
Ta có: z1 + z2 = 3; z1. z2 = 4
Rõ ràng, z1, z2 là các nghiệm của phương trình:
(z – z1)(z – z2) = 0 hay z2 – (z1 + z2)z + z1. z2 = 0
Vậy z1, z2 là các nghiệm của phương trình: z2 – 3z + 4 = 0
Phương trình có Δ = 9 – 16 = -7
Vậy hai số phức cần tìm là: z1=3+i√72,z2=3−i√72