Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 34
Số lượng câu trả lời 60
Điểm GP 16
Điểm SP 47

Người theo dõi (8)

Vương Thủy
ngu vip
nguyễn minh hà
Tý Nguyen

Đang theo dõi (0)


Câu trả lời:

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) (1)

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}mx^2=x^2-3x-1\\x^2-3x-1-2x+5<0\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}f\left(x\right):=\left(m-1\right)x^2+3x+1=0\\x^2-5x+4<0\end{cases}\)

Mà  \(x^2-5x+4<0\)  (3) có tập nghiệm T=(1;4)

nên hệ (1) có nghiệm duy nhất khi và chỉ khi phương trình \(f\left(x\right):=\left(m-1\right)x^2+3x+1=0\) (2) có đúng một nghiệm \(x\in T\)

- Nếu m=1 thì (2) có nghiệm duy nhất \(x=-\frac{1}{3}\) không thuộc T

- Nếu \(m\ne1\) thì (2) là phương trình bậc 2 với \(\Delta=13-4m\)

              + Nếu \(\Delta=0\)  hay \(m=\frac{13}{4}\)  thì (2) có nghiệm \(x=-\frac{2}{3}\) không thuộc T

              +  Nếu \(\Delta>0\)  hay \(m<\frac{13}{4}\)  thì (2) có nghiệm duy nhất thuộc T khi và chỉ khi xảy ra một trong hai trường hợp sau :

                                 \(x_1\)  \(\le\)1 < \(x_2\)  < 4  (a)

                             hoặc

                                1< \(x_1\)  <4  \(\le\)   \(x_2\)    (b)

                           # Nếu \(x_1\) = 1 \(\Leftrightarrow\) m-1+3+1=0 \(\Leftrightarrow\) m=-3 thì \(x_2=-\frac{1}{4}\) không thỏa mãn(a)

                            # Nễu \(x_2=4\) hay \(m=\frac{3}{16}\) thì \(x_1=-\frac{4}{13}\) không thỏa mãn (b)

Vậy ta phải có 

                                     \(x_1\)  <1 < \(x_2\)  < 4 

                               hoặc 

                                     1< \(x_1\)  <4  <   \(x_2\)  

\(\Leftrightarrow\) \(f\left(1\right)f\left(4\right)<0\)

\(\Leftrightarrow\) (m+3)(16m-3) <0

\(\Leftrightarrow\) -3<m<\(\frac{3}{16}\)  Thỏa mãn điều kiện \(\Delta>0\)

Tóm lại -3<m<\(\frac{3}{16}\)  là các giá trị cần tìm