a) \(\dfrac{3}{7}-x=\dfrac{5}{21}\)
\(x=\dfrac{3}{7}-\dfrac{5}{21}=\dfrac{4}{21}\)
b) \(\dfrac{4}{5}x+\dfrac{1}{3}=1,5=\dfrac{3}{2}\)
\(\dfrac{4}{5}x=\dfrac{3}{2}-\dfrac{1}{3}=\dfrac{7}{6}\)
\(x=\dfrac{7}{6}:\dfrac{4}{5}=\dfrac{7}{6}.\dfrac{5}{4}=\dfrac{35}{24}\)
c) \(3\left(x+\dfrac{1}{2}\right)-\dfrac{1}{2}\left(4x-\dfrac{2}{3}\right)=\dfrac{5}{6}\)
\(3x+\dfrac{3}{2}-2x+\dfrac{1}{3}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}-\dfrac{1}{3}-\dfrac{3}{2}=-1\)
d) \(\left(x-\dfrac{3}{2}\right)^2=\dfrac{9}{16}=\left(\dfrac{3}{4}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{3}{4}\\x-\dfrac{3}{2}=-\dfrac{3}{4}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
e) \(\left(2x-1\right)^3=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)
\(2x-1=\dfrac{2}{3}\)
\(2x=\dfrac{5}{3}\)
\(x=\dfrac{5}{6}\)
f) \(\left(\dfrac{7}{5}\right)^x=\dfrac{49}{25}=\left(\dfrac{7}{5}\right)^2\)
\(x=2\)
g) \(\left(\dfrac{1}{2}\right)^x=\dfrac{1}{32}=\left(\dfrac{1}{2}\right)^5\)
\(x=5\)