a, F(x)= 5x2 -1 +3x + x2 - 5x3
F(x)= -5x3 + (5x2 + x2) + 3x - 1
F(x)= -5x3 + 6x2 + 3x - 1
G(x)= 2 - 3x3 + 6x2 + 5x - 2x3 - x
G(x)= (-3x3 - 2x3) + 6x2 + (5x - x) + 2
G(x)= -5x3 + 6x2 + 4x + 2
F(x)-G(x)= -5x3 + 6x2 + 3x - 1 - (-5x3 + 6x2 + 4x + 2)
= -5x3 + 6x2 + 3x - 1 + 5x3 - 6x2 - 4x - 2
= (−5x3 + 5x)+(6x2 − 6x)+(3x − 4x)+(−1 − 2)
= -x - 3
b, Ta có: N(x)+F(x)= -G(x) ⇒ N(x) = −G(x) − F(x)
N(x) = −(−5x3 + 6x + 4x + 2)−(−5x3 + 6x + 3x − 1)
= 5x3 − 6x − 4x − 2 + 5x3 − 6x − 3x + 1
=(5x3 + 5x)+(−6x2 - 6x)+(−4x − 3x)+(−2 + 1)
=10x − 12x − 7x − 1