. Cho ∆ABC cân tại A, kẻ AH BC (H ∈ BC). Gọi N là trung điểm của AC. a)Chứng minh ∆ABH = ∆ACH
b)Hai đoạn thẳng BN và AH cắt nhau tại G, trên tia đối của tia NB lấy K sao cho NK = NG.
Chứng minh: AG // CK
c)Chứng minh: G là trung điểm của BK
d)Gọi M là trung điểm AB. Chứng minh BC + AG > 4GM.
Cho P(x) = 2x3 – x4 + 2x – x2 + x4 + 20 + x và Q(x) = 2x2 – 4x3 – 3x – 4 + 3x3 – 3x2. a) Thu gọn và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính K(x) = P(x) + Q(x) và H(x) = P(x) – Q(x).
c) Chứng tỏ x = – 2 là một nghiệm của K(x) nhưng không phải là nghiệm của H(x).