HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Câu 1: Trích trong tác phẩm "Đồng chí" của Chính Hữu mà cậu ?
a) \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\sqrt{x}+24}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3\sqrt{x}+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\) (đpcm)
b) Mình không biết làm bạn thông cảm.
ĐKXĐ:
\(3x-2\ge0\)
\(\Leftrightarrow3x\ge2\)
\(\Leftrightarrow x\ge\dfrac{2}{3}\)
Vậy biểu thức xác định khi \(x\ge\dfrac{2}{3}\).
Cậu thay 4 vào biểu thức thì biểu thức vẫn xác định nên không cần \(x\ne4\) nhé
a) ĐKXĐ: \(x\ge0;\ne1\)
\(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\) (đpcm)
Vậy \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\).
b) Ta có:
\(2P=2\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=2\sqrt{x}+5\)
\(\Rightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)
\(\Leftrightarrow2x+3\sqrt{x}-2=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{1}{2}\\\sqrt{x}=-2\left(\text{loại}\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{4}\left(TM\right)\)
Vậy để \(2P=2\sqrt{x}+5\) thì \(x=\dfrac{1}{4}\).
Thiếu đề?
Check lại đi cậu.