HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1) Cho tam giác ABC vuông tại A , có AB=3cm , BC=5cm. Từ B kẻ đường thẳng vuông góc với BC cắt đường thẳn AC tại D . Gọi E,F lần lượt là hình chiếu của A trên BC và BD
a) Tính độ dài AC, AD
b) Chứng minh BE.BC=BF.BD
c) Chứng minh BCD= BFE
1) Rút gọn và tính giá trị của biểu thức A=\(\sqrt{x}\).(\(\sqrt{x}\)+1)-(\(\sqrt{x}\)-1)2 - 2 , tại x=9
2) Cho biểu thức A=(\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) -\(\dfrac{2\sqrt{x}+7}{x-4}\) ) : (\(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1\) ) với x≥0 ; x≠4
a) Rút gọn biểu thức A
b) Tìm các giá trị của x để A≥ -2
1) Thực hiện phép tính:
(\(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}\) - \(\dfrac{5}{\sqrt{5}}\)) : \(\dfrac{1}{2+\sqrt{5}}\)
2) Tìm x , biết :
\(\sqrt{\left(2x+3\right)^2}\)=9
1) Cho các số thực dương x,y,z thỏa mãn điều kiện x\(\sqrt{2020-y^2}\) + y\(\sqrt{2020-z^2}\) +z\(\sqrt{2023-x^2}\)=3030. Tính giá trị vủa biểu thức A=x\(^2\)+\(y^2\)+\(z^2\)
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H xuống AB,AC.
a) Cho BH=4cm , CH=9cm. Tính AH,DE.
b) Chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn.
c) Đường phân giác của BAH^ cắt BC tại K . Gọi I là trung điểm của AK . Chứng minh CI vuông góc AK.
1) Cho biểu thức A= (\(\dfrac{3\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{1}{\sqrt{x}+1}\)- 3) . \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) với x≥0 và x≠1
a) rút gọn A
b) tìm x để A<0
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1