Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 532
Điểm GP 239
Điểm SP 508

Người theo dõi (9)

Đang theo dõi (0)


Câu trả lời:

Câu 2:

\(\dfrac{3}{2\sqrt{6}+5}+\dfrac{3}{2\sqrt{6}-5}\)

\(=\dfrac{3\left(2\sqrt{6}-5\right)+3\left(2\sqrt{6}+5\right)}{\left(2\sqrt{6}-5\right)\left(2\sqrt{6}+5\right)}\)

\(=\dfrac{6\sqrt{6}-15+6\sqrt{6}+15}{24-25}\)

\(=-12\sqrt{6}\)

Câu 3:

a) Điều kiện: \(x\ge2\)

\(\sqrt{x-2}+1=4\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\)

\(\Leftrightarrow x=11\) (nhận)

Vậy phương trình có tập nghiệm là: \(S=\left\{11\right\}.\)

b) \(\sqrt{4x^2}=3\)

\(\Leftrightarrow\sqrt{\left(2x\right)^2}=3\)

\(\Leftrightarrow\left|2x\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}.\)

Câu 4:

a) \(B=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right]:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Yêu cầu bài toán: \(\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\)

\(\Rightarrow3\left(\sqrt{x}-1\right)=\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}\)

\(\Leftrightarrow2\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\)

\(\Leftrightarrow x=\dfrac{9}{4}\) (nhận)

Vậy với \(x=\dfrac{9}{4}\) thì \(B=\dfrac{1}{3}.\)

Câu trả lời:

Đề phải là \(A=1-\left(\dfrac{2x^2+x-1}{1-x^2}+\dfrac{2x^3-x+x^2}{1+x^3}\right).\dfrac{\left(1-x\right)\left(x^2-x\right)}{2x-1}\) thì mới làm đc.

Điều kiện xác định: \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

\(A=1-\left[\dfrac{2x^2+x-1}{\left(1-x\right)\left(1+x\right)}+\dfrac{x\left(2x^2+x-1\right)}{\left(1+x\right)\left(1-x+x^2\right)}\right].\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\left\{\dfrac{\left(2x^2-x\right)+\left(2x-1\right)}{\left(1-x\right)\left(1+x\right)}+\dfrac{x\left[\left(2x^2-x\right)+\left(2x-1\right)\right]}{\left(1+x\right)\left(1-x+x^2\right)}\right\}.\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\left\{\dfrac{x\left(2x-1\right)+\left(2x-1\right)}{\left(1-x\right)\left(1+x\right)}+\dfrac{x\left[x\left(2x-1\right)+\left(2x-1\right)\right]}{\left(1+x\right)\left(1-x+x^2\right)}\right\}.\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\left[\dfrac{\left(x+1\right)\left(2x-1\right)}{\left(1-x\right)\left(x+1\right)}+\dfrac{x\left(x+1\right)\left(2x-1\right)}{\left(x+1\right)\left(1-x+x^2\right)}\right].\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\left[\dfrac{2x-1}{1-x}+\dfrac{x\left(2x-1\right)}{1-x+x^2}\right].\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\dfrac{\left(2x-1\right)\left(1-x+x^2\right)+x\left(2x-1\right)\left(1-x\right)}{\left(1-x\right)\left(1-x+x^2\right)}.\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\dfrac{\left(2x-1\right)\left[\left(1-x+x^2\right)+x\left(1-x\right)\right]}{\left(1-x\right)\left(1-x+x^2\right)}.\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\dfrac{\left(2x-1\right)\left[1-x+x^2+x-x^2\right]}{\left(1-x\right)\left(1-x+x^2\right)}.\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\dfrac{\left(2x-1\right)}{\left(1-x\right)\left(1-x+x^2\right)}.\dfrac{\left(1-x\right).x\left(x-1\right)}{2x-1}\)

\(=1-\dfrac{x\left(2x-1\right)\left(1-x\right)\left(x-1\right)}{\left(2x-1\right)\left(1-x\right)\left(1-x+x^2\right)}\)

\(=1-\dfrac{x\left(x-1\right)}{1-x+x^2}\)

\(=\dfrac{1-x+x^2-x\left(x-1\right)}{1-x+x^2}\)

\(=\dfrac{1-x+x^2-x^2+x}{1-x+x^2}\)

\(=\dfrac{1}{1-x+x^2}\)