`10.`
`a)`
\(\dfrac{x}{2}-\left(\dfrac{3x}{5}-\dfrac{13}{5}\right)=\left(\dfrac{7}{5}+\dfrac{7}{10}x\right)\)
\(\Rightarrow\dfrac{x}{2}-\left(\dfrac{3x-13}{5}\right)=\dfrac{7}{5}+\dfrac{7}{10}x\)
\(\Rightarrow\dfrac{x}{2}-\dfrac{3x-13}{5}-\dfrac{7}{10}x=\dfrac{7}{5}\\
\Rightarrow\dfrac{5x}{10}-\dfrac{2\left(3x-13\right)}{10}-\dfrac{7x}{10}=\dfrac{14}{10}\\
\Rightarrow5x-6x+26-7x=14\\
\Rightarrow-8x=14-26\\
\Rightarrow-8x=-12\\
\Rightarrow x=\dfrac{3}{2}\)
Vậy, `x = 3/2`
`b)`
\(\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2x-3}{3}-\dfrac{5-3x}{6}=\dfrac{3}{2}-\dfrac{1}{3}\\
\Rightarrow\dfrac{2\left(2x-3\right)}{6}-\dfrac{5-3x}{6}=\dfrac{7}{6}\\
\Rightarrow4x-6-5+3x=7\\
\Rightarrow7x=7+5+6\\
\Rightarrow7x=18\\
\Rightarrow x=\dfrac{18}{7}\)
Vậy, `x = 18/7`
`c)`
\(\dfrac{1}{x-1}+\dfrac{-2}{3}\left(\dfrac{3}{4}-\dfrac{6}{5}\right)=\dfrac{5}{2-2x}\)
\(\Rightarrow\dfrac{1}{x-1}-\dfrac{5}{2-2x}=\dfrac{2}{3}\cdot\left(-\dfrac{9}{20}\right)\\
\Rightarrow\dfrac{2}{2\left(x-1\right)}+\dfrac{5}{2\left(x-1\right)}=\dfrac{3}{10}\\
\Rightarrow\dfrac{2+5}{2\left(x-1\right)}=\dfrac{3}{10}\\
\Rightarrow\dfrac{7}{2\left(x-1\right)}=\dfrac{3}{10}\\
\Rightarrow6\left(x-1\right)=70\\
\Rightarrow6x-6=70\\
\Rightarrow6x=76\\
\Rightarrow x=\dfrac{38}{3}\)
Vậy, `x = 38/3`
`d)`
\(\left(3\div x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3\div x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3\div x=1\\-\dfrac{1}{2}x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=10\end{matrix}\right.\)
Vậy, `x \in {3; 10}`
`e)`
\(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}+\dfrac{-3}{7}\div x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-\dfrac{4}{9}=0\\\dfrac{1}{2}+\dfrac{-3}{7}\div x=0\end{matrix}\right.\\
\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\-\dfrac{3}{7}\div x=-\dfrac{1}{2}\end{matrix}\right.\\
\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{6}{7}\end{matrix}\right.\)
Vậy, `x \in {2/3; 6/7}.`