`#3107.101107`
`2.`
`a)`
`3/4 \div (x + 1/2) - 5/6 = -(1/2)^2`
`=> 3/4 \div (x + 1/2) = -1/4 + 5/6`
`=> 3/4 \div (x + 1/2) = 7/12`
`=> x + 1/2 = 3/4 \dvi 7/12`
`=> x + 1/2 = 9/7`
`=> x = 9/7 - 1/2`
`=> x = 11/14`
Vậy, `x = 11/14`
`b)`
\(\left(-\dfrac{1}{3}\right)^{x-3}=\dfrac{1}{81}\\
\Rightarrow\left(-\dfrac{1}{3}\right)^{x-3}=\left(-\dfrac{1}{3}\right)^4\\
\Rightarrow x-3=4\\
\Rightarrow x=4+3\\
\Rightarrow x=7\)
`c)`
\(\left(2x-3\right)^2-\dfrac{1}{4}=6^{20}\div6^{19}\\
\Rightarrow\left(2x-3\right)^2-\dfrac{1}{4}=6\\
\Rightarrow\left(2x-3\right)^2=6+\dfrac{1}{4}\\
\Rightarrow\left(2x-3\right)^2=\dfrac{25}{4}\\
\Rightarrow\left(2x-3\right)^2=\left(\pm\dfrac{5}{2}\right)^2\\
\Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{5}{2}\\2x-3=-\dfrac{5}{2}\end{matrix}\right.\\
\Rightarrow\left[{}\begin{matrix}2x=\dfrac{5}{2}+3\\2x=-\dfrac{5}{2}+3\end{matrix}\right.\\
\Rightarrow\left[{}\begin{matrix}2x=\dfrac{11}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\
\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy, `x \in {11/4; 1/4}`
`d)`
\(\dfrac{x+1}{2022}+\dfrac{x+3}{2020}+\dfrac{x+5}{2018}+\dfrac{x+7}{2016}+4=0\)
`=> ((x + 1)/2022 + 1) + ((x + 3)/2020 + 1) + ((x + 5)/2018 + 1) + ((x + 7)/2016 + 1) = 0`
`=> (x + 1 + 2022)/2022 + (x + 3 + 2020)/2020 + (x + 5 + 2018)/2018 + (x + 7 + 2016)/2016 = 0`
`=> (x + 2023)/2022 + (x + 2023)/2020 + (x + 2023)/2018 + (x + 2023)/2016 = 0`
`=> (x + 2023)(1/2022 + 1/2020 + 1/2018 + 1/2016) = 0`
Vì `1/2022 + 1/2020 + 1/2018 + 1/2016 \ne 0`
`=> x + 2023 = 0`
`=> x = -2023`
Vậy, `x = -2023.`