\(a.\)
\(2x+10y=2x+5\cdot2y=2\left(x+5y\right).\)
\(x^2+xy+x=x\cdot x+x\cdot y+x=x\left(x+y+1\right).\)
\(3x^2y-6xy+12xy^2=3xy\cdot x-2\cdot3xy+4y\cdot3xy=3xy\left(x-2+4y\right).\)
\(b.\)
\(y\left(x-2\right)-2x\left(x-2\right)=\left(x-2\right)\left(y-2x\right).\)
\(2x^2\left(x-2y\right)+xy\left(x-2y\right)=x\left(x-2y\right)\left(2x+y\right).\)
\(x\left(y-x\right)-2y\left(x-y\right)=x\left(y-x\right)-2y\left[-\left(y-x\right)\right]\)
\(=x\left(y-x\right)-\left[-2y\left(y-x\right)\right].\)
\(c.\)
\(x^2-9=x^2-3^2=\left(x+3\right)\left(x-3\right).\)
\(\left(4x-1\right)^2-4x^2=\left(4x-1\right)^2-\left(2x\right)^2\)
\(=\left[\left(4x-1\right)+2x\right]\left[\left(4x-1\right)-2x\right]=\left(6x-1\right)\left(2x-1\right).\)
\(\left(x+1\right)^2-\left(2x-1\right)^2=\left[\left(x+1\right)+\left(2x-1\right)\right]\left[\left(x+1\right)-\left(2x-1\right)\right]\)
\(=3x\left(-x+2\right).\)
\(x^2+4x+4=x^2+2x\cdot2+2^2=\left(x+2\right)^2.\)
\(d.\)
\(9x^2-6x+1=\left(3x\right)^2-2\cdot3x\cdot1+1^2=\left(3x-1\right)^2.\)
\(4x-4-x^2=-x^2+4x-4=-\left(x^2-4x+4\right)=-\left(x-2\right)\left(x-2\right)\)
\(=-\left(x-2\right)^2.\)
\(8x^3-1=\left(2x\right)^3-1^3=\left(2x-1\right)\left(2^2x^2+2x+1\right)\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right).\)