HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
sai mong a thông cảm nha a:")
c,
Ta có :
Δ ABC vuông A
AM là đường trung tuyến
=> AM = BM = MC
BM + MC = BC
Mà BM = MC
=> BM = MC = \(\dfrac{1}{2}BC\)
Ta có : AM = BM = MC (cmt)
=> AM = \(\dfrac{1}{2}BC\)
b,
AB // CD (cmt)
Mà BA ⊥ AC
=> CD ⊥ AC
Xét Δ ABC và Δ CDA, có :
AB = CD (gt)
\(\widehat{BAC}=\widehat{DCA}=90^o\)
\(\widehat{CBA}=\widehat{ADC}\) (Δ MBA = Δ MCD)
=> Δ ABC = Δ CDA (g.c.g)
tự vẽ hình:)
a,
Xét Δ MBA và ΔMCD, có :
MA = MD (gt)
MB = MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{CMD}\) (đối đỉnh)
=> Δ MBA = Δ MCD (c.g.c)
=> AB = CD
Ta có : \(\widehat{MBA}=\widehat{MCD}\) (Δ MBA = Δ MCD)
=> AB // CD (sole - trong)
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (Py - ta - go)
=> \(10^2=AB^2+6^2\)
=> AB = 8 (cm)
Xét Δ MAC và Δ MBD, có :
MD = MC (gt)
MA = MB (M là trung tuyến của AB)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
=> Δ MAC = Δ MBD (c.g.c)
Ta có : AM = 2AB
=> AM = 4 (cm)
Xét Δ AMC vuông tại A, có :
\(CM^2=AM^2+AC^2\) (Py - ta - go)
=> \(CM^2=4^2+6^2\)
=> CM ≈ 7,2 (cm)
AC + BC = 6 + 10 = 16 (cm)
2CM ≈ 7,2 x 2 ≈ 14,4 (cm)
=> AC + BC > 2CM
Xét Δ ABC vuông tại B, có :
\(AC^2=AB^2+BC^2\) (Py - ta - go)
=> \(AC^2=12^2+9^2\)
=> AC = 15 (cm)
Ta có : Δ HBA ~ Δ BAC (cmt)
=> \(\dfrac{HA}{BC}=\dfrac{BA}{AC}\)
=> \(\dfrac{HA}{9}=\dfrac{12}{15}\)
=> HA = 7,2 (cm)
Xét Δ AHD vuông tại H, có :
\(AD^2=AH^2+DH^2\) (Py - ta - go)
=> \(9^2=7,2^2+DH^2\)
=> DH = 5,4 (cm)
Ta có : BD = BH + DH
=> 15 = BH + 5,4
=> BH = 9,6 (cm)
\(S_{\text{Δ}AHB}=\dfrac{1}{2}.AH.HB\)
=> \(S_{\text{Δ}AHB}=34,56\left(cm^2\right)\)
Xét Δ HBA và Δ BAC, có :
\(\widehat{BHA}=\widehat{ABC}=90^o\)
\(\widehat{ABH}=\widehat{CAB}\) (cùng phụ \(\widehat{ABC}\))
=> Δ HBA ~ Δ BAC (g.g)
Xét Δ BAK và Δ BDK, có :
BK là cạnh chung
BA = BD (gt)
\(\widehat{ABK}=\widehat{DBK}\) (BK là tia phân giác \(\widehat{ABC}\))
=> Δ BAK = Δ BDK (c.g.c)
Gọi O là giao điểm của AD và BK
Ta có : BA = BD
=> Δ BAD cân tại B
Mà BK là tia phân giác
=> BO là đường trung trực của AD
=> BK là đường trung trực của AD