HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
C
A
a, 7y2
b, 6xy2
Câu c:
Xét tg BHD và tg CKE, có:
góc DHB= góc EKC(=90o)
DB= CE(2 cạnh tương ứng)
góc D= góc C(tg cân)
=> tg DHB= tg EKC(ch-gn)
=>HB=KC(2 cạnh tương ứng)(đpcm)
Hết, chúc bạn học tốt.
Bài 2:
a,Ta có: tg ABC cân tại A.
=>AB=AC và góc ABC= góc ACB.
Xét tg ABD và tg ACE, có:
AB=AC(cmt)
góc B= góc C(cmt)
BD=CE(gt)
=>tg ABD= tg ACE(c. g. c)
=>AD=AE(2 cạnh tương ứng)
=>tg ADE cân tại A.
b, Xét tg ABM và tg ACM, có:
BM=ME(M là trung điểm)
góc BAM= góc MAC(tia phân giác)
AB=AC(cmt câu a)
=>tg ABM= tg AMC(g. c. g)
=>góc BAM= góc BAC(2 góc tương ứng)
=>AM là tia phân giác của góc BCA.
Mà tg ABC và tg ADE đều là tg cân tại A.
=>AM là tia phân giác của góc EAD.