a) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
`=>`\(x\in\left\{0;-5;5\right\}\)
b) \(4x\left(x+1\right)=8\left(x+1\right)\)
\(\Leftrightarrow4x^2+4x=8x+8\)
`<=>`\(4x^2+4x-8x=8\)
`<=>`\(4x^2-4x=8\)
`<=>`\(4x^2-4x-8=0\)
`<=>`\(4\left(x-2\right)\left(x+1\right)=0\)
`<=>`\(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
`=>`\(x\in\left\{2;-1\right\}\)
c) \(4-x=4\left(x-4\right)^2\)
`<=>`\(4-x=4x^2-32x+64\)
\(\Leftrightarrow4-x-4x^2+32x-64=0\)
\(\Leftrightarrow4+31x-4x^2-64=0\)
\(\Leftrightarrow-60+31x-4x^2=0\)
\(\Leftrightarrow4x^2-16x-15x+60=0\)
\(\Leftrightarrow4x\left(x-4\right)-15\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x-15=0\end{matrix}\right.\)
`=>`\(x\in\left\{\dfrac{15}{4};4\right\}\)