HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
B
sầu
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
rides-walks
b. \(=\left(\dfrac{2}{a\left(a+1\right)}-\dfrac{2}{a+1}\right):\dfrac{1-a}{a^2+2a+1}\)
\(=\left(\dfrac{2-2a}{a\left(a+1\right)}\right):\dfrac{1-a}{\left(a+1\right)^1}\)
\(=\dfrac{\left(2-2a\right)\left(a+1\right)^2}{a\left(a+1\right)\left(1-a\right)}\)
\(=\dfrac{2\left(1-a\right)\left(a+1\right)^2}{a\left(a+1\right)\left(1-a\right)}=\dfrac{2\left(a+1\right)}{a}\)
a.\(=\sqrt{2}.\left(\sqrt{25}-\sqrt{9}\right)=\sqrt{2}.\left(5-3\right)=2\sqrt{2}\)
b. \(=\left(\dfrac{\sqrt{a}-a+a\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(\dfrac{2\sqrt{a}}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\)
\(=1-a\)
ta có: tam giác ABC đường phân giác cũng là đường trung tuyến
=> tam giác ABC cân tại Axét tam giác ABM và tam giác ACM có:
BM = CM ( gt )
Vậy tam giác ABM = tam giác ACM ( c.g.c )
bạn chứng minh :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( chứng minh tương tự )
ta có: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)
mặt khác : \(p=\dfrac{a+b+c}{2}\Leftrightarrow2p=a+b+c\)
\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\left(1\right)\)
Chứng minh tương tự ta có:
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)
\(\dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{b}\left(3\right)\)
Cộng từng vế (1),(2),(3), ta có:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge2\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(đpcm\right)\)