HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho A=(100-40)(99-40)(98-40)...(11-40)(10-40). Hãy tính A?
CMR: 9...92(n chữ số 9)=999...8000...1 (1 chữ số 8 xen giữa n-1 chữ số 9 và 0)
-Ta có: AE+EB>AB=a (bất đẳng thức trong tam giác AEB)
DE+EC>DC=c (bất đẳng thức trong tam giác DEC)
AE+DE>AD=d (bất đẳng thức trong tam giác AED)
BE+EC>BC=b (bất đẳng thức trong tam giác BEC)
=> AE+EB+DE+EC+AE+DE+BE+EC>a+b+c+d.
=> AC+BD+AC+BD>a+b+c+d.
=> 2(AC+BD)>a+b+c+d
=> AC+BD >\(\dfrac{a+b+c+d}{2}\)(1)
Ta có: AC<AB+BC=a+b (bất đẳng thức trong tam giác ABC)
AC<AD+DC=c+d (bất đẳng thức trong tam giác ADC)
BD< AB+AD=a+d (bất đẳng thức trong tam giác ABD)
BD< BC+DC=b+c (bất đẳng thức trong tam giác BCD)
=>2(AC+BD)<2(a+b+c+d)
=>AC+BD<a+b+c+d. (2)
Từ (1) và (2) suy ra:
\(\dfrac{a+b+c+d}{2}< AC+BD< a+b+c+d\)
Xét tam giác ABD có:
AB//IE (gt)
=>\(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(định lí Ta-let). (1)
Xét tam giác ABI có:
AB//DC (gt)
=>\(\dfrac{DI}{BD}=\dfrac{CI}{AC}\)(định lí Ta-let) (2)
Xét tam giác ABC có:
IF//AB (gt)
=>\(\dfrac{IF}{AB}=\dfrac{CI}{AC}\)(định lí Ta-let) (3)
- Từ (1),(2),(3) suy ra \(\dfrac{EI}{AB}=\dfrac{IF}{AB}\)=>EI=IF
Ta có: \(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(cmt) =>\(\dfrac{AB}{IE}=\dfrac{BD}{DI}\)=>\(\dfrac{AB}{IE}-1=\dfrac{BI}{DI}\)(4)
=>\(\dfrac{BI}{DI}=\dfrac{AB}{DC}\)(định lí Ta-let) (5)
- Từ (4) và (5) suy ra: \(\dfrac{AB}{IE}-1=\dfrac{AB}{DC}\)
=>\(\dfrac{AB}{IE}=\dfrac{DC+AB}{DC}\)
=>IE=IF=\(\dfrac{AB.DC}{AB+DC}=\dfrac{4.5}{9}=\dfrac{20}{9}\left(cm\right)\)
- Câu d dễ mà :)
-Khoan khoan sao đề giống với đề cương ôn tập của mình thế :)?
Chị ơi chị làm bài này đi chị :)