HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm các số dương x,y,z thỏa mãn: \(\dfrac{3x-2y+z}{x}=\dfrac{3y-2z+x}{y}=\dfrac{3z-2x+y}{z}\)
Cho các số x,y,z khác 0 thỏa mãn 2(x+y)=3(y+z)=4(x+z). Tính P = \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Cho số nguyên dương n thỏa mãn 2n+1 và 3n+1 là các số chính phương. CMR: 6n+5 là hợp số
Cho x,y là các số nguyên dương thỏa mãn: x2+y2+30 ⋮ x+y. CMR: x,y là các số lẻ và nguyên tố cùng nhau
Tìm x,y,z nguyên thỏa mãn 0<x<y<z: 2x+2y+2z=4736
Cho x,y thỏa mãn \(\left(x+y-1\right)^2=-\left|y+1\right|\)
Tính M = \(x^{2021}+y^{2021}+2021\)
Tìm GTNN A = \(\dfrac{3\sqrt{x}+1}{2\sqrt{x}+2}\) (x ≥ 0)