Khi giải phương trình \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\), ta được nghiệm là
\(x=\dfrac{2}{3}\) hoặc \(x=\dfrac{13}{4}\). \(x=\dfrac{2}{3}\) hoặc \(x=\dfrac{3}{2}\). \(x=-\dfrac{2}{3}\) hoặc \(x=-\dfrac{13}{4}\). \(x=\dfrac{2}{3}\) hoặc \(x=-\dfrac{3}{2}\). Hướng dẫn giải:\(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(2-5x\right)-\left(2-3x\right)\left(x+11\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2-5x\right)+\left(3x-2\right)\left(x+11\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left[2-5x+x+11\right]=0\)
\(\Leftrightarrow\left(3x-2\right)\left(13-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\13-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)