Chứng inh rằng :
a) \(\overline{\left(\dfrac{z_1}{z_2}\right)}=\overline{\dfrac{z_1}{z_2}}\)
b) \(\left|\dfrac{z_1}{z_2}\right|=\dfrac{\left|z_1\right|}{\left|z_2\right|}\)
Chứng inh rằng :
a) \(\overline{\left(\dfrac{z_1}{z_2}\right)}=\overline{\dfrac{z_1}{z_2}}\)
b) \(\left|\dfrac{z_1}{z_2}\right|=\dfrac{\left|z_1\right|}{\left|z_2\right|}\)
a) Cho số phức z. Chứng minh rằng z là một số thực khi và chỉ khi \(z=\overline{z}\)
b) Chứng tỏ rằng số phúc sau là một số thực :
\(z=-\dfrac{3+2i\sqrt{3}}{\sqrt{2}+3i}+\dfrac{-3+2i\sqrt{3}}{\sqrt{2}-3i}\)
Tìm nghịch đảo của số phức sau :
a) \(\sqrt{2}-i\sqrt{3}\)
b) \(i\)
c) \(\dfrac{1+i\sqrt{5}}{3-2i}\)
d) \(\left(3+i\sqrt{2}\right)^2\)
Giải phương trình sau trên tập số phức :
\(\left(1-i\right)z+\left(2-i\right)=4-5i\)
Thảo luận (1)Hướng dẫn giải
Tìm các số phức \(2z+\overline{z}\) và \(\dfrac{25i}{z}\) biết rằng \(z=3-4i\)