Bài 1: Tính đơn điệu của hàm số

Bài tập 1 (SGK Cánh Diều - Tập 1 - Trang 13)

Hướng dẫn giải

Dựa vào bảng biến thiên ta thấy đồ thị hàm số đi lên trong khoảng \(\left( {0;1} \right)\) nên hàm số đồng biến trên khoảng \(\left( {0;1} \right) \Rightarrow D\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Cánh Diều - Tập 1 - Trang 13)

Hướng dẫn giải

Giá trị cực tiểu của hàm số là \(y =  - 4 \Rightarrow C\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Cánh Diều - Tập 1 - Trang 13)

Hướng dẫn giải

a) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' =  - 3{x^2} + 4x\).

Nhận xét \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{4}{3}\end{array} \right.\)

Ta có bảng biến thiên sau:

Vậy hàm số đồng biến trên khoảng \(\left( {0;\frac{4}{3}} \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {\frac{4}{3}; + \infty } \right)\).

b) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 4{x^3} + 4x\).

Nhận xét \(y' = 0 \Leftrightarrow x = 0.\)

Ta có bảng biến thiên sau:

Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; 0} \right)\).

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Ta có: \(y' = \frac{5}{{{{\left( {2 - x} \right)}^2}}}\).

Nhận xét \(y' > 0{\rm{ }}\forall x \in D\)

Ta có bảng biến thiên sau:

Vậy hàm số đồng biến trên khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).

d) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(y' = \frac{{\left( {2x - 2} \right)\left( {x + 1} \right) - {x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2x - 2}}{{{{\left( {x + 1} \right)}^2}}}\).

Nhận xét \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1 + \sqrt 3 \\x =  - 1 - \sqrt 3 \end{array} \right.\).

Ta có bảng biến thiên sau:

Vậy hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1 - \sqrt 3 } \right)\) và \(\left( { - 1 + \sqrt 3 ; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - 1 - \sqrt 3 ; - 1} \right)\) và \(\left( { - 1; - 1 + \sqrt 3 } \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 4 (SGK Cánh Diều - Tập 1 - Trang 13)

Hướng dẫn giải

a) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 6{x^2} + 6x - 36\).

Nhận xét \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 3\end{array} \right.\).

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x = 2\).

b) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = -{4x^3} - 4x\).

Nhận xét \(y' = 0 \Leftrightarrow x = 0\).

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực tiểu tại \(x = 0\).

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Ta có: \(y' = 1 - \frac{1}{{{x^2}}}\).

Nhận xét: \(y' = 0 \Leftrightarrow 1 - \frac{1}{{{x^2}}} = 0 \Leftrightarrow x =  \pm 1\).

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực đại tại x = -1 và đạt cực tiểu tại x = 1.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 5 (SGK Cánh Diều - Tập 1 - Trang 14)

Hướng dẫn giải

a) Hàm số đồng biến trên khoảng \(( - 1;0)\) và \((1; + \infty )\), nghịch biến trên khoảng \(( - \infty ; - 1)\) và \((0;1)\). Hàm số đạt cực tiểu tại \(x =  - 1\) và \(x = 1\), đạt cực đại tại \(x = 0\).

b) Hàm số đồng biến trên khoảng \(( - \infty ; - 2)\) và \((0;1)\), nghịch biến trên khoảng \(( - 2;0)\) và \((1; + \infty )\). Hàm số đạt cực tiểu tại \(x = 0\), đạt cực đại tại \(x =  - 2\) và \(x = 1\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6 (SGK Cánh Diều - Tập 1 - Trang 14)

Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(V'\left( T \right) =  - 0,06426 + 2 \times 0,0085043 \times T - 3 \times 0,0000679{T^2}\).

Nhận xét \(V'\left( T \right) = 0 \Leftrightarrow \left[ \begin{array}{l}T \approx 79,5\\T \approx 3,97\end{array} \right.\).

Ta có bảng biến thiên sau:

Vậy thể tích giảm trong khoảng nhiệt độ từ \(\left( {{0^o};3,{{97}^o}} \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 7 (SGK Cánh Diều - Tập 1 - Trang 14)

Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(a\left(t\right)=v'\left( t \right) = 3 \times 0,001302{t^2} - 2 \times 0,09029t\)

Nhận xét \(a'\left( t \right) = 0 \Leftrightarrow t \approx 23,1\).

Vậy gia tốc tàu con thoi tăng từ giây thứ \(23,1\)

(Trả lời bởi datcoder)
Thảo luận (1)