Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+xy+y=5\\x^2+y^2=5\left(I\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\x^2+y^2+2xy=5+2xy\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(x+y\right)^2=5+2xy\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(5-xy\right)^2=5+2xy\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\25-10xy+x^2y^2-5-2xy=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\20-12xy+x^2y^2=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(xy\right)^2-2xy-10xy+20=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left(xy-10\right)\left(xy-2\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left[{}\begin{matrix}xy-10=0\\xy-2=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=5-xy\\\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\end{matrix}\right.\)
TH1 : x = 10 .
- Thay x = 10 vào phương trình ( I ) ta được :
\(10^2+y^2=5\)
=> \(y^2=-95\) ( vô lý )
-> x = 10 ( loại )
TH2 : x = 2 .
- Thay x = 2 vào phương trình ( I ) ta được :
\(2^2+y^2=5\)
=> \(y^2=1\)
=> \(y=1\)
Vậy phương trình trên có nghiệm duy nhất là \(\left(x;y\right)=\left(2;1\right)\)