\(f\left(x\right)=\left(x+1\right)\left(3-x\right)=3x-x^2+3-x\)
\(=-x^2+2x+3\)
\(\Delta'=1^2-1\cdot\left(-1\right)\cdot3=4>0,a=-1< 0\)
\(\Rightarrow f\left(x\right)\) có hai nghiệm phân biệt : \(x_1=-1,x_2=3\)
Khi đó \(f\left(x\right)>0\forall x\in\left(-\infty;-1\right)\cup\left(3;+\infty\right)\)
\(f\left(x\right)< 0\forall x\in\left(-1;3\right)\).