Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nga thanh

Xác định m để pt \(\left|x^2+2x-3\right|=m-5\) có 4 nghiệm phân biệt

Nguyen
30 tháng 11 2019 lúc 22:47

Bằng BBT VT có min=0 tại x=1;-3;y=4 khi x=-1.

=> 0<m-5<4<=>m kt tại.

Khách vãng lai đã xóa
Akai Haruma
1 tháng 12 2019 lúc 9:30

Lời giải:

Bạn có thể làm dạng bài này dựa vào việc về ĐTHS

Xét đồ thị $(C): y=x^2+2x-3$

Và đồ thị $(D): y=|x^2+2x-3|$

Ta thấy:

\(y=|x^2+2x-3|=\left\{\begin{matrix} x^2+2x-3\text{với} x\in (-\infty;-3]\cup [1;+\infty)\\ -(x^2+2x-3)\text{với} -3\leq x\leq 1\end{matrix}\right.\)

Đồ thị $(D): y=|x^2+2x-3|$ gồm 2 phần:

Phần 1: Phần đồ thị $(C)$ nằm phía trên trục hoành

Phần 2: Phần đối xứng qua trục hoành của phần đồ thị $(C) nằm phía dưới trục hoành.

Chương 2: HÀM SỐ BẬC NHẤT VÀ  BẬC HAI

Số nghiệm của PT $|x^2+2x-3|=m-5$ chính là số giao điểm của 2 ĐTHS $(D):y=|x^2+2x-3|$ với $y=m-5$

Từ đồ thị trên ta thấy để PT ban đầu có 4 nghiệm phân biệt thì đường thẳng $y=m-5$ cắt $|x^2+2x-3|$ tại 4 điểm phân biệt

$\Leftrightarrow 0< m-5< 4$

$\Leftrightarrow 5< m< 9$

Khách vãng lai đã xóa

Các câu hỏi tương tự
fghj
Xem chi tiết
luu thao
Xem chi tiết
kirigaya
Xem chi tiết
Rimuru Tempest
Xem chi tiết
Cplusplus
Xem chi tiết
Ánh Dương
Xem chi tiết
Trần Hoàng Đạt
Xem chi tiết
Phạm Lê Quỳnh Nga
Xem chi tiết
Lê Thu Trang
Xem chi tiết