Gọi n FeSO4.7H2O=x(mol)
suy ra
\(\left\{{}\begin{matrix}m_{FeSO4KT}=152x\\m_{H2OKT}=126x\end{matrix}\right.\)
Ở 30oC
Gọi m FeSO4=a, m H2O=800-a(g)
Do độ tan của FeSO4 ở 30oC = 35,93
suy ra\(\frac{a}{800-a}.100=35,93\)
-->a=287,44-0,3593a
--->0,6407a=287,44
--->a=448,63
---> mH2O=800-448,63=351,37(g)
Ở 10oC
m FeSO4=448,63-152x
m H2O=351,37-126x
Do độ tan S của FeSO4 ở 10oC là 21suy ra
\(\frac{448,63-152x}{351,37-126x}.100=21\)
--->448,63-152x=66,23-26,46x
---> 125,54x=382,37
-->x=3,046(g)
--> m FeSO4,7H2O=3,046.278=846,788(g)
Tại 30 độ C cứ 35,93 gam FeSO4 tan bão hòa trong 100 gam H2O tạo thành 135,93 gam dd bão hòa
Vậy x = ? gam FeSO4 tan bão hòa trong y =? gam H2O tạo thành 800 gam dd bão hòa
\(x=\frac{35,93.800}{135,93}=211,46\left(g\right)\)
\(y=\frac{100.800}{135,93}=588,54\left(g\right)\)
Đặt số mol FeSO4.7H2O tách ra = a (mol) → nH2O = 7.nFeSO4.7H2O = 7a (mol)
→ mFeSO4 tách ra = 152a (g); mH2O trong tinh thế \(\text{= 7a×18 = 126a (g)}\)
→ Khối lượng FeSO4 còn lại trong dd \(\text{= 211,46 – 152a (g)}\)
→ Khối lượng H2O còn lại trong dd \(\text{= 588,54 – 126a (g)}\)
Xét ở 10 độ:
Cứ 21 gam FeSO4 tan trong 100 gam H2O tạo thành 121 gam dd bão hòa
Vậy (211,46-152a) gam FeSO4 tan trong (588,54-126a) gam H2O tạo thành dd bão hòa
\(\text{→ (211,46 – 152a)×100 = (588,54 – 126a)×21}\)
\(\text{→ 21146 – 15200a = 12359,34 – 2646a}\)
\(\text{→ 8786,66 = 17846a}\)
\(\text{→ a ≈ 0,49 (mol)}\)
→ mFeSO4.7H2O = nFeSO4.7H2O × MFeSO4.7H2O = 0,49×278 = 136,22 (g)