ĐKXĐ:x khác -1
\(\dfrac{3x+1}{\left(x+1\right)^3}=\dfrac{a}{\left(x+1\right)^3}+\dfrac{b}{\left(x+1\right)^2}\)
=>3x+1=a+b(x+1)
=>3x+1=bx+a+b
=>b=3 và a+b=1
=>b=3 và a=-2
Vậy b=3 ; a=-2
ĐKXĐ:x khác -1
\(\dfrac{3x+1}{\left(x+1\right)^3}=\dfrac{a}{\left(x+1\right)^3}+\dfrac{b}{\left(x+1\right)^2}\)
=>3x+1=a+b(x+1)
=>3x+1=bx+a+b
=>b=3 và a+b=1
=>b=3 và a=-2
Vậy b=3 ; a=-2
Thực hiện phép tính
\(a,\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(b,\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(c,\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(d,\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
\(e,\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(f,\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(g,\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(h,\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
Rút gọn biểu thức:
a) \(A=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ca}{\left(b-c\right)\left(b-a\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
b) \(B=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+x^3+\dfrac{1}{x^3}}\)
Giải các bất phương trình sau :
a) \(4x-8\ge3\left(3x-1\right)-2x+1\)
b) \(\left(x-3\right)\left(x+2\right)+\left(x+4\right)^2\le2x\left(x+5\right)+4\)
c) \(3x-\dfrac{x+2}{3}\le\dfrac{3\left(x-2\right)}{2}+5-x\)
d) \(x-\dfrac{x+2}{3}\ge3x-1+\dfrac{x}{2}\)
e) \(\dfrac{x\left(x+2\right)}{3}+\dfrac{\left(x-1\right)\left(x+2\right)}{2}\ge\dfrac{5\left(x+1\right)^2}{6}+1\)
f) \(\dfrac{x+5}{2012}+\dfrac{x+6}{2011}+\dfrac{x+7}{2010}>-3\)
Tìm GTNN của
a) \(A=\dfrac{\left(x+100\right)^2}{x}\)
b) \(B=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\) với x > 0
Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
\(A=\left[\left(\dfrac{1}{x}+1\right)\cdot\dfrac{2}{x^3+3x^2+3x+1}+\dfrac{1}{1+2x+x^2}\cdot\left(1+\dfrac{1}{x^2}\right)\right]:\dfrac{x-1}{x^3}\)
a) Rút gọn
b) x bằng mấy để A = 3?
c) x thuộc Z, x bằng mấy để A thuộc Z?
Giải các phương trình sau :
a)\(\dfrac{5x+2}{6}\)\(-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c)\(2x^3 +6x^2=x^2+3x\)
d)\(\left|x-4\right|+3x=5\)
Rút gọn:
\(A=\left[\dfrac{x+3}{\left(x-3\right)^2}+\dfrac{6}{x^2-9}-\dfrac{x-3}{\left(x+3\right)^2}\right]\left[1:\left(\dfrac{24x^2}{x^4-81}-\dfrac{12}{x^2+9}\right)\right]\)
\(B=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left[\left(x-2\right)+\dfrac{10-x^2}{x+2}\right]\)
Rút gọn:
\(A=\dfrac{x}{5-x}+\left(\dfrac{x}{x^2-25}+\dfrac{5-x}{5x+x^2}\right):\dfrac{2x-5}{x^2+5x}\)
\(B=\left[\left(\dfrac{1}{x^2}+1\right)\cdot\dfrac{1}{1+2x+x^2}+\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{\left(1+x\right)^3}\right]:\dfrac{x-1}{x^3}\)