Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
Quy đòng : \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và \(2x+3y-z=372\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{372}{62}=6\)
\(\Rightarrow\begin{cases}\frac{x}{15}=6\Rightarrow x=90\\\frac{x}{20}=6\Rightarrow x=120\\\frac{x}{28}=6\Rightarrow x=168\end{cases}\)
Vậy \(x=90;y=120;z=168\)
Có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
Và: \(\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
\(\frac{x}{15}=6\Rightarrow z=90\)
\(\frac{y}{20}=6\Rightarrow y=120\)
\(\frac{z}{28}=6\Rightarrow z=168\)
Giải:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{62}=\frac{372}{62}=6\)
+) \(\frac{2x}{30}=6\Rightarrow x=90\)
+) \(\frac{3y}{60}=6\Rightarrow y=120\)
+) \(\frac{z}{7}=6\Rightarrow z=42\)
Vậy x = 90; y = 120; z = 42