`x(2x-9)=3x(x-5)`
`<=>2x^2-9x=3x^2-15x`
`<=>-x^2+6x=0`
`<=>-x(x-6)=0`
`<=>` \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy `S={0;6}`.
\(x\left(2x-9\right)=3x\left(x-5\right)\)
<=> \(2x^2-9x=3x^2-15x\)
<=> \(-x^2+6x=0\)
<=> \(-x\left(x-6\right)=0\)
=> x=0 hoặc \(x-6=0=>x=6\)