\(\left\{{}\begin{matrix}\left|x+1\right|\ge0\forall x\\\left|x+2\right|\ge0\forall x\\\left|x+3\right|\ge0\forall x\end{matrix}\right.\)\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\forall x\)
=> \(x\ge0\)
Khi đó \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=x+1+x+2+x+3\)
= 3x + 6 > x \(\forall x\ge0\)
Do đó phương trình vô nghiệm.
NX: VT ≥ 0 => VP = x ≥ 0
pt <=> 3x + 6 = x
<=> x = -3