Đẹp Trai Không Bao Giờ Sai sau tag mik nx nha
tth Trần Thanh Phương giúp mk vs
Đẹp Trai Không Bao Giờ Sai sau tag mik nx nha
tth Trần Thanh Phương giúp mk vs
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
CHO x,y,z >0 ,xyz=\(\frac{1}{2}\)
CMR:\(\frac{yz}{x^2\left(y+z\right)}\)+\(\frac{zx}{y^2\left(z+x\right)}\)+\(\frac{xy}{z^2\left(x+y\right)}\) ≥ xy+yz+zx
Mọi người ơi giúp mình với
Câu 1: Cho x, y, z > 0 và \(5\left(x^2+y^2+z^2\right)=6\left(xy+yz+xz\right)\)Tìm giá trị nhỏ nhất của
\(P=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Câu 2: Cho a, b, c >0 và \(\left\{{}\begin{matrix}ab+bc+ca>0\\a\ge c\end{matrix}\right.\)Tìm giá trị nhỏ nhất của
\(p=\frac{\left(a+b\right)}{\left(b+c\right)}+\frac{\left(b+c\right)}{\left(c+a\right)}+\frac{\left(c+a\right)^2}{a\left(b+c\right)+c\left(b+a\right)}\)
Các bạn giúp mình với
Câu 1: Cho a, b, c >0 và \(a\le b+c\) Tìm giá trị nhỏ nhất của
\(p=\frac{c}{\left(a+b\right)}+\left(b+c\right)\left(\frac{1}{b+2c}+\frac{1}{a+c}\right)\)
Câu 2: Cho x, y, z >0 Tìm giá trị nhỏ nhất
\(p=\frac{1}{3}\left(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\right)\left[\frac{xyz\left(x+y+z\right)}{x^2y^2+y^2z^2+z^2x^2}\right]^2\)
Câu 3: Cho \(x,y,z\in R\) và \(x^2+y^2+z^2=1\) Tìm giá trị lớn nhất của
\(P=\frac{x^2y^2}{1-xy}+\frac{z^2y^2}{1-zy}+\frac{x^2z^2}{1-xz}\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
1.Cho tam giác ABC. Chứng minh:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
2. Cho x, y, z > 0 và xyz = 1. Tìm giá trị nhỏ nhất :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Chứng minh rằng nếu x, y là các số thực dương thì : \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\)
cho x,y,z,t thỏa mãn xyzt=1. Cmr:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+xt\right)}+\frac{1}{z^3\left(xt+yt+yz\right)}+\frac{1}{t^3\left(xy+yz+xz\right)}\ge\frac{3}{4}\)
Tìm GTNN của hàm số:
a) \(y=4x+\frac{16}{x+1}\left(x>-1\right)\)
b) \(y=x+\frac{2}{x-1}\left(x>1\right)\)