Cho hàm số \(y=f\left(x\right)\) liên tục trên R, có đạo hàm \(f'\left(x\right)=x\left(x-1\right)^2\left(x-2\right)\) . Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho hàm số \(y=f\left(\dfrac{x+2}{x+m}\right)\) đồng biến trên khoảng \(\left(10;+\infty\right)\) . Tính tổng các phần tử của S.
Hỏi có bao nhiêu giá trị nguyên dương của tham số m sao cho hàm số \(y=\frac{2x^2+\left(1-m\right)x+1+m}{x-m}\) đồng biến trên khoảng \(\left(1;+\infty\right)\) ?
A,2 B, 0 C, 3 D, 1
Tổng tất cả các giá trị của tham số m để hàm số \(y=\dfrac{1}{5}m^2x^5-\dfrac{1}{3}mx^3+10x^2-\left(m^2-m-20\right)x+1\) đồng biến trên R bằng bao nhiêu?
Cho các hàm số \(f\left(x\right)=x^2-4x+m\) và \(g\left(x\right)=\left(x^2+1\right)\left(x^2+2\right)^2\left(x^2+3\right)^3\) . Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) .
Cho hàm số y= \(\dfrac{x^3}{3}-\left(m-1\right)x^2+3\left(m-1\right)x+1\) . Số các giá trị nguyên của m để hàm số đồng biến trên (1;dương vô cực ) là
Cho hàm số y=f(x) có đạo hàm \(f'\left(x\right)=x\left(x+1\right)^2\left(x^2+2mx+1\right)\) với mọi x thuộc R. Có bao nhiêu số nguyên âm m để hàm số \(g\left(x\right)=f\left(2x+1\right)\) đồng biến trên khoảng (3;5)
có bao nhiêu giá trị nguyên của tham số M để hàm số y= x+1/ x+3M nghịch biến trên khoảng (6;+∞)
A 0 B6 C3 D vô số
có bao nhiêu giá trị nguyên của M để hàm số y= x+2/ x+5M đồng biến trên khoảng (-∞;-10)
A 4 B vô số C 1 D3
tìm các giá trị thực của m để y=\(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)\) đồng biến trên \([2;+\infty\)
tìm các giá trị thực của m để y=\(x^3-3\left(m+1\right)x^2+3m\left(m+2\right)x\) nghich biến trên \(\left[0;1\right]\)
tìm tất cả m để y=\(x^4-2mx^2\) đồng biến \(\left(0;+\infty\right)\) trên và nghịch biến trên \(\left(-\infty;0\right)\)