Bài 1: Hàm số lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

từ pt \(1+sin^3x+cos^3x=\frac{3}{2}sin2x\). tính \(cos\left(x+\frac{\pi}{4}\right)\)

Nguyễn Việt Lâm
27 tháng 9 2020 lúc 15:57

\(1+sin^3x+cos^3x=3sinx.cosx\)

\(\Leftrightarrow1+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=3sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

Pt trở thành:

\(1+t\left(1-\frac{t^2-1}{2}\right)=\frac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow2+t\left(3-t^2\right)=3t^2-3\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\sqrt{6}-1>\sqrt{2}\left(l\right)\\t=\sqrt{6}+1>\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sinx+cosx=-1\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow cos\left(x+\frac{\pi}{4}\right)=\pm\sqrt{1-sin^2\left(x+\frac{\pi}{4}\right)}=\pm\frac{\sqrt{2}}{2}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
An Lê Khánh
Xem chi tiết
trung nguyen
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Trần Thị Vân Anh
Xem chi tiết
Julian Edward
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết