Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen

Từ cách phân tích: \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\).CMR:

Với \(S_a+S_b\ge0;S_b+S_c\ge0\) thì\(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\ge0\)

tthnew
8 tháng 9 2019 lúc 10:38

Đây nhá:)Sửa đề:

Chứng minh rằng \(\Sigma S_a\left(b-c\right)^2\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Nếu \(s_a+S_b\ge0;S_b+S_c\ge0;2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\ge0\)

Xét TH \(a\ge b\ge c\) thì bđt đề bài hiển nhiên đúng nên ta chỉ xét:

\(a\le b\le c\) khi đó \(\left(a-b\right)\left(b-c\right)\ge0\) (1)

Ta có: \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\)

\(=\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_c+S_b\right)\left(a-b\right)^2+2S_b\left(a-b\right)\left(b-c\right)\)

\(\ge2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}\left(a-b\right)\left(b-c\right)+2S_b\left(b-c\right)\left(a-b\right)\)

(CÔ si)

Như vậy, BĐT đề bài sẽ được chứng minh nếu:

\(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}\left(a-b\right)\left(b-c\right)+2S_b\left(b-c\right)\left(a-b\right)\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\right)\ge0\)

Và điều này luôn đúng theo (1) và giả thiết đề bài.

Trần Thanh Phương
8 tháng 9 2019 lúc 9:29

\(S_a\left(b-c\right)^2\) là gì vậy, cái này em chưa học. Giải thích đi để em xem thế nào...


Các câu hỏi tương tự
dbrby
Xem chi tiết
dbrby
Xem chi tiết
dbrby
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Julian Edward
Xem chi tiết
Kinder
Xem chi tiết